第1章 矢量分析

1.1 矢量代数

1.1.1 标量和矢量

​ 数学上,任一代数量aa都可称为标量。在物理学中,任一代数量一旦被赋

予“物理单位”,则称为一个具有物理意义的标量,即所谓的物理量,如电压uu

荷量QQ、质量mm能量ww等都是标量。

​ 一般的三维空间内某一点 PP处存在的一个既有大小又有方向特性的量称为

矢量。

单位矢量:模为1的矢量称为单位矢量。eAe_A表示与矢量AA同方向的单位矢量,显然:

eA=AA\begin{aligned} e_A=\frac{\mathbf{A}}{A} \end{aligned}

常矢量:大小和方向均不变的矢量。 单位矢量不一定是常矢量。

1.1.2 矢量的加法和减法

平行四边形法则

运算法则

交换律A+B=B+AA+B=B+A

结合律(A+B)+C=A+(B+C)(A+B)+C=A+(\begin{array}{c}B+C\\\end{array})

1.1.3 矢量的乘法

​ 标量和矢量:kAk\vec{A}还是矢量,大小为kA|k|Ak>0k>0,则kAk\vec{A}A\vec{A}同方西,反之。

​ 矢量和矢量:

​ (1)点积(标积):

​ 交换律:AB=BAA\cdot B=B\cdot A

​ 分配律:A(B+C)=AB+ACA\cdot(B+C)=A\cdot B+A\cdot C

​ (2)叉积(矢积):

​ 显然有:A×B=B×AA\times B=-B\times A

​ 不满足交换律。

​ 分配律:A×(B+C)=A×B+A×CA\times(\begin{array}{c}\boldsymbol{B}+\boldsymbol{C}\end{array})=A\times\boldsymbol{B}+A\times\boldsymbol{C}

​ 标量三重积:A(B×C)=B(C×A)=C(A×B)A\cdot(B\times C)=B\cdot(C\times A)=C\cdot(A\times B)

​ 矢量三重积:A×(B×C)=B(C×A)=C×(A×B)A\times (B\times C)=B\cdot(C\times A)=C\times (A\times B)

1.2 三种常用的正交曲线坐标系

​ 电磁理论中,常用直角坐标系,圆柱坐标系和球坐标系。

1.2.1 直角坐标系

​ 右手螺旋定则:ex×ey=ez×ey×ez=ex×ez×ex=eye_x\times e_y=e_z\times e_y\times e_z=e_x\times e_z\times e_x=e_y

​ 任意矢量A\vec{A}表示为:A=exAx+eyAy+ezAzA=e_{x}A_{x}+e_{y}A_{y}+e_{z}A_{z}

​ 两矢量和:A+B=ex(Ax+Bx)+ey(Ay+By)+ez(Az+Bz)A+B=e_{x}(A_{x}+B_{x})+e_{y}(A_{y}+B_{y})+e_{z}(A_{z}+B_{z})

​ 两矢量点积:

AB=(exAx+eyAy+ezAz)(exBx+eyBy+ezBz)=AxBx+AyBy+AzBz\begin{aligned} \textbf{A}\cdot\textbf{B}& =(\boldsymbol{e}_{x}A_{x}+\boldsymbol{e}_{y}A_{y}+\boldsymbol{e}_{z}A_{z})\cdot(\boldsymbol{e}_{x}B_{x}+\boldsymbol{e}_{y}B_{y}+\boldsymbol{e}_{z}B_{z}) \\ &=A_{x}B_{x}+A_{y}B_{y}+A_{z}B_{z} \end{aligned}

​ 两矢量叉积:

A×B=(exAx+eyAy+ezAz)×(exBx+eyBy+ezBz)=ex(AyBzAzBy)+ey(AzBzAzBz)+ez(AxByAyBz)=exeyezAxAyAzBxByBz\begin{aligned} A\times B& =(\boldsymbol{e}_{x}A_{x}+\boldsymbol{e}_{y}A_{y}+\boldsymbol{e}_{z}A_{z})\times(\boldsymbol{e}_{x}B_{x}+\boldsymbol{e}_{y}B_{y}+\boldsymbol{e}_{z}B_{z}) \\ &=e_x(A_yB_z-A_zB_y)+e_y(A_zB_z-A_zB_z)+e_z(A_xB_y-A_yB_z) \\ &=\left|\begin{array}{cccc}\boldsymbol{e}_x&\boldsymbol{e}_y&\boldsymbol{e}_z\\\\A_x&A_y&A_z\\\\B_x&B_y&B_z\end{array}\right| \end{aligned}

​ 位置矢量:r=exx+eyy+ezz\vec{r}=\vec{e}_xx+\vec{e}_yy+\vec{e}_zz

​ 微分元矢量(线元矢量):dl=exdx+eydy+ezdz\mathrm{d}\vec{l}=\vec{e}_x\mathrm{d}x+\vec{e}_y\mathrm{d}y+\vec{e}_z\mathrm{d}z

​ 面元矢量:

dSx=exdlydlz=exdydzdSy=eydlxdlz=eydxdzdSz=ezdlxdly=ezdxdy\begin{gathered} \mathrm{d}\vec{S}_x=\vec{e}_x\mathrm{d}l_y\mathrm{d}l_z=\vec{e}_x\mathrm{d}y\mathrm{d}z \\ \mathrm{d}\vec{S}_y=\vec{e}_y\mathrm{d}l_x\mathrm{d}l_z=\vec{e}_y\mathrm{d}x\mathrm{d}z \\ \begin{aligned}\mathrm{d}\vec{S}_z=\vec{e}_z\mathrm{d}l_x\mathrm{d}l_y=\vec{e}_z\mathrm{d}x\mathrm{d}y\end{aligned} \end{gathered}

​ 体积元:dV=dxdydz\mathrm{d}V=\mathrm{d}x\mathrm{d}y\mathrm{d}z

1.2.2 圆柱坐标系

​ 三个坐标量的变化范围:

​ 与直角坐标系的变换关系:ρ=x2+y2,ϕ=arctan(y/x),z=z\rho=\sqrt{x^{2}+y^{2}},\phi=\arctan\left(y/x\right),z=zx=ρcosϕ,y=ρsinϕ,z=zx=\rho\mathrm{cos}\phi,y=\rho\mathrm{sin}\phi,z=z

​ 右手螺旋法则:$\boldsymbol{e}\rho\times\boldsymbol{e}\phi=\boldsymbol{e}z,\boldsymbol{e}\phi\times\boldsymbol{e}z=\boldsymbol{e}\rho,\boldsymbol{e}z\times\boldsymbol{e}\rho=\boldsymbol{e}_\phi $

​ 变换关系:$\boldsymbol{e}{\rho}=\boldsymbol{e}{x}\cos\phi+\boldsymbol{e}{y}\sin\phi,\boldsymbol{e}{\phi}=-\boldsymbol{e}{x}\sin\phi+\boldsymbol{e}{y}\cos\phi $

$\boldsymbol{e}{x}=\boldsymbol{e}{\rho}\cos\phi-\boldsymbol{e}{\phi}\sin\phi,\boldsymbol{e}{y}=\boldsymbol{e}{\rho}\sin\phi+\boldsymbol{e}{\phi}\cos\phi $

​ 矩阵形式:

[eρeϕez]=[cosϕsinϕ0sinϕcosϕ0001][eee][eseses]=[cosϕsinϕ0sinϕcosϕ0001][eρeϕes]\begin{aligned}&\begin{bmatrix}e_{\rho}\\e_{\phi}\\e_{z}\end{bmatrix}=\begin{bmatrix}\cos\phi&\sin\phi&0\\-\sin\phi&\cos\phi&0\\0&0&1\end{bmatrix}\begin{bmatrix}e_{*}\\e_{*}\\e_{*}\end{bmatrix}\\\\&\begin{bmatrix}e_{s}\\e_{s}\\e_{s}\end{bmatrix}=\begin{bmatrix}\cos\phi&-\sin\phi&0\\\sin\phi&\cos\phi&0\\0&0&1\end{bmatrix}\begin{bmatrix}e_{\rho}\\e_{\phi}\\e_{s}\end{bmatrix}\end{aligned}

​ 必须知道**:圆柱坐标系中的单位矢量eρe_\rhoeϕe_\phi都不是常矢量**。是随ϕ\phi变化的:

{eρϕ=exsinϕ+eγcosϕ=eϕeϕϕ=ezcosϕeγsinϕ=eρ\begin{cases}\dfrac{\partial\boldsymbol{e}_\rho}{\partial\boldsymbol{\phi}}=-\boldsymbol{e}_x\sin\phi+\boldsymbol{e}_\gamma\cos\phi=\boldsymbol{e}_\phi\\\\\dfrac{\partial\boldsymbol{e}_\phi}{\partial\boldsymbol{\phi}}=-\boldsymbol{e}_z\cos\phi-\boldsymbol{e}_\gamma\sin\phi=-\boldsymbol{e}_\rho\end{cases}

​ 矢量A\vec{A}在直角坐标系和圆柱坐标系中的变换关系类似上述变换,这里不再赘述。

​ 在圆柱坐标系中,由于eρe_\rhoeϕe_\phi都是随ϕ\vec{\phi}变化的,不同点的eρe_\rhoeϕe_\phi一般是不同的。因此,位于不同点的两个矢量一般不能像直角坐标系那样直接用对应分量进行加法和乘法运算,但对位于同一个点的两个矢量可以用对应分量进行加法和乘法运算。

​ 对位于同一点 P(ρ,ϕ,z)P\left(\rho,\phi,z\right)或在同一个 ϕ=\phi=常数的平面上的矢量AAB\vec{B}

A+B=eρ(Aρ+Bρ)+eϕ(Aϕ+Bϕ)+ez(Az+Bz)(1)AB=(eρAρ+eϕAϕ+ezAz)(eρBρ+eϕBϕ+ezBz)=AρBρ+AϕBϕ+AzBz(2)A×B=(eρAρ+eϕAϕ+ezAz)×(eρBρ+eϕBϕ+ezBz)=eρ(AϕBzAzBϕ)+eϕ(AzBρAρBz)+ez(AρBϕAϕBρ)=eρeϕezAρAϕAzBρBϕBz(3)\begin{aligned} &A+\boldsymbol{B}=\boldsymbol{e}_{\rho}(\begin{array}{c}A_{\rho}+B_{\rho}\\\end{array})+\boldsymbol{e}_{\phi}(\begin{array}{c}A_{\phi}+B_{\phi}\\\end{array})+\boldsymbol{e}_{z}(\begin{array}{c}A_{z}+B_{z}\\\end{array})& \text{(1)} \\ &A·B=(\boldsymbol{e}_{\rho}A_{\rho}+\boldsymbol{e}_{\phi}A_{\phi}+\boldsymbol{e}_{z}A_{z})\boldsymbol{\cdot}(\boldsymbol{e}_{\rho}B_{\rho}+\boldsymbol{e}_{\phi}B_{\phi}+\boldsymbol{e}_{z}B_{z}) \\ &=A_{\rho}B_{\rho}+A_{\phi}B_{\phi}+A_{z}B_{z}& \text{(2)} \\ &A\times B=(\begin{array}{c}\boldsymbol{e}_{\rho}A_{\rho}+\boldsymbol{e}_{\phi}A_{\phi}+\boldsymbol{e}_{z}A_{z}\\\end{array})\times(\begin{array}{c}\boldsymbol{e}_{\rho}B_{\rho}+\boldsymbol{e}_{\phi}B_{\phi}+\boldsymbol{e}_{z}B_{z}\\\end{array}) \\ &=\boldsymbol{e}_{\rho}(\begin{array}{c}A_{\phi}B_{z}-A_{z}B_{\phi}\end{array})+\boldsymbol{e}_{\phi}(\begin{array}{c}A_{z}B_{\rho}-A_{\rho}B_{z}\end{array})+\boldsymbol{e}_{z}(\begin{array}{c}A_{\rho}B_{\phi}-A_{\phi}B_{\rho}\end{array}) \\ &=\left|\begin{array}{lll}\boldsymbol{e}_\rho&\boldsymbol{e}_\phi&\boldsymbol{e}_z\\A_\rho&A_\phi&A_z\\B_\rho&B_\phi&B_z\end{array}\right|& \text{(3)} \end{aligned}

​ 位置矢量:r=eρρ+ezzr=e_\rho\rho+\boldsymbol{e}_zz

​ 线元(微分元)矢量:dr=d(eρρ)+d(ezz)=eρdρ+ρdeρ+ezdz=eρdρ+eϕρdϕ+ezdz\begin{aligned}\mathrm{d}\boldsymbol{r}&=\mathrm{d}\left(\boldsymbol{e}_{\rho}\rho\right)+\mathrm{d}\left(\boldsymbol{e}_{z}z\right)=\boldsymbol{e}_{\rho}\mathrm{d}\rho+\rho\mathrm{d}\boldsymbol{e}_{\rho}+\boldsymbol{e}_{z}\mathrm{d}z\\&=\boldsymbol{e}_{\rho}\mathrm{d}\rho+\boldsymbol{e}_{\phi}\rho\mathrm{d}\phi+\boldsymbol{e}_{z}\mathrm{d}z\end{aligned}

​ 面元矢量:

​ 体积元:dV=ρdρdϕdz\operatorname{d}V=\rho\operatorname{d}\rho\operatorname{d}\phi\operatorname{d}z

​ 度量系数(拉梅系数):hρ=dlρdρ=1,hϕ=dlϕdϕ=ρ,hz=dlzdz=1h_{\rho}=\frac{\mathrm{d}l_{\rho}}{\mathrm{d}\rho}=1,h_{\phi}=\frac{\mathrm{d}l_{\phi}}{\mathrm{d}\phi}=\rho,h_{z}=\frac{\mathrm{d}l_{z}}{\mathrm{d}z}=1

1.2.3 球坐标系

​ 三个坐标量变化范围:

​ 球坐标系与直角坐标系之间的变换关系:r=x2+y2+z2,θ=arccos(z/x2+y2+z2),ϕ=arctan(y/x)r=\sqrt{x^{2}+y^{2}+z^{2}},\theta=\arccos\left(z/\sqrt{x^{2}+y^{2}+z^{2}}\right),\phi=\arctan\left(y/x\right)

​ 右手螺旋定则:er×eθ=eϕ,eθ×eϕ=er,eϕ×er=eθ\boldsymbol{e}_{r}\times\boldsymbol{e}_{\theta}=\boldsymbol{e}_{\phi},\boldsymbol{e}_{\theta}\times\boldsymbol{e}_{\phi}=\boldsymbol{e}_{r},\boldsymbol{e}_{\phi}\times\boldsymbol{e}_{r}=\boldsymbol{e}_{\theta}

​ 与直角坐标系变换关系:

[ereθeϕ]=[sinθcosϕsinθsinϕcosθcosθcosϕcosθsinϕsinθsinϕcosϕ0][exeyex][exeyez]=[sinθcosϕcosθcosϕsinϕsinθsinϕcosθsinϕcosϕcosθsinθ0][ereθeϕ]\begin{aligned} &\left[\begin{array}{c} e_r \\ \boldsymbol{e}_\theta \\ \boldsymbol{e}_\phi \end{array}\right]=\left[\begin{array}{ccc} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \phi & \cos \phi & 0 \end{array}\right]\left[\begin{array}{l} \boldsymbol{e}_x \\ \boldsymbol{e}_y \\ \boldsymbol{e}_x \end{array}\right]\\\\ &\left[\begin{array}{l} e_x \\ e_y \\ e_z \end{array}\right]=\left[\begin{array}{ccc} \sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\ \sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\ \cos \theta & -\sin \theta & 0 \end{array}\right]\left[\begin{array}{l} e_r \\ e_\theta \\ e_\phi \end{array}\right] \end{aligned}

证明使用各个方向投影叠加得到。

​ 其中,单位矢量er,eθ 和 eϕe_r,e_{_\theta}\text{ 和 }e_{_\phi}都不是常矢量,

{erθ=eθ,erϕ=eϕsinθeθθ=er,eθϕ=eϕcosθeϕθ=0,eϕϕ=e,sinθeϕcosθ\begin{cases}\frac{\partial\boldsymbol{e}_r}{\partial\theta}=\boldsymbol{e}_\theta,\quad\frac{\partial\boldsymbol{e}_r}{\partial\boldsymbol{\phi}}=\boldsymbol{e}_\phi\sin\theta\\\\\frac{\partial\boldsymbol{e}_\theta}{\partial\theta}=-\boldsymbol{e}_r,\quad\frac{\partial\boldsymbol{e}_\theta}{\partial\boldsymbol{\phi}}=\boldsymbol{e}_\phi\cos\theta\\\\\frac{\partial\boldsymbol{e}_\phi}{\partial\theta}=0,\quad\frac{\partial\boldsymbol{e}_\phi}{\partial\phi}=-\boldsymbol{e}_,\sin\theta-\boldsymbol{e}_\phi\cos\theta\end{cases}

​ 矢量在球坐标系和直角坐标系中的表达式之间的变换关系与上述单位向量之间的关系相同。

​ 对位于同一点 P(r,θ,ϕ)P(r,\theta,\phi)或在沿同一条半径线上的两个矢量 ABA和B

A+B=er(Ar+Br)+eθ(Aθ+Bθ)+eϕ(Aϕ+Bϕ)(1)AB=ArBr,+AθBθ+AϕBϕ(2)A×B=er(AθBϕAϕBθ)+eθ(AϕBrArBϕ)+eϕ(ArBθAθBr)=e,eθeϕArAθAϕBrBθBϕ(3)\begin{aligned} &A+\boldsymbol{B}=\boldsymbol{e}_{r}(\begin{array}{c}A_{r}+B_{r}\end{array})+\boldsymbol{e}_{\theta}(\begin{array}{c}A_{\theta}+B_{\theta}\end{array})+\boldsymbol{e}_{\phi}(\begin{array}{c}A_{\phi}+B_{\phi}\end{array})&& \text{(1)} \\ &A\cdot\boldsymbol{B}=A_rB_r,+A_{\theta}B_{\theta}+A_{\phi}B_{\phi}&& (2) \\ A\times B& =\boldsymbol{e}_{r}(\begin{array}{c}A_{\theta}B_{\phi}-A_{\phi}B_{\theta}\end{array})+\boldsymbol{e}_{\theta}(\begin{array}{c}A_{\phi}B_{r}-A_{r}B_{\phi}\end{array})+\boldsymbol{e}_{\phi}(\begin{array}{c}A_{r}B_{\theta}-A_{\theta}B_{r}\end{array}) \\ &=\left|\begin{array}{llll}\boldsymbol{e},&\boldsymbol{e}_\mathrm{\theta}&\boldsymbol{e}_\mathrm{\phi}\\A_r&A_\mathrm{\theta}&A_\mathrm{\phi}\\B_\mathrm{r}&B_\mathrm{\theta}&B_\mathrm{\phi}\end{array}\right|&& \text{(3)} \end{aligned}

​ 位置矢量:r=err=e_r

​ 微分元(线元)矢量:$\mathrm{d}\boldsymbol{r}=\mathrm{d}\left(\boldsymbol{e}_rr\right)=\boldsymbol{e}_r\mathrm{d}r+r\mathrm{d}\boldsymbol{e}r=\boldsymbol{e}r\mathrm{d}r+\boldsymbol{e}\theta r\mathrm{d}\theta+\boldsymbol{e}\phi r\mathrm{sin}\theta\mathrm{d}\phi $

​ 面元矢量(面积元):

​ 体积元:

​ 度量(拉梅)系数:hr=1,hθ=r,hϕ=rsinθ\begin{aligned}h_{_r}&=1,h_{_\theta}=r,h_{_\phi}=r\sin\theta\end{aligned}

1.2.4 补充知识

1. 坐标单位矢量之间的变换关系

​ 直角坐标系与圆柱坐标系:

exeyezeρcosϕsinϕ0eϕsinϕcosϕ0ez001\begin{array}{|c|c|c|c|c|}\hline&\vec{e}_\mathrm{x}&\vec{e}_\mathrm{y}&\vec{e}_z\\\hline\vec{e}_\mathrm{\rho}&\cos\phi&\sin\phi&0\\\hline\vec{e}_\mathrm{\phi}&-\sin\phi&\cos\phi&0\\\hline\vec{e}_z&0&0&1\\\hline\end{array}

​ 圆柱坐标系与球坐标系:

eρeϕezersinθ0cosθeθcosθ0sinθeϕ010\begin{array}{|c|c|c|c|}\hline&\vec{e}_\rho&\vec{e}_\phi&\vec{e}_z\\\hline\vec{e}_r&\sin\theta&0&\cos\theta\\\hline\vec{e}_\theta&\cos\theta&0&-\sin\theta\\\hline\vec{e}_\phi&0&1&0\\\hline\end{array}

​ 直角坐标系与球坐标系:

exeyezersinθcosϕsinθsinϕcosθeθcosθcosφcosθsinϕsinθeϕsinϕcosϕ0\begin{array}{|c|c|c|c|}\hline&\vec{e}_x&\vec{e}_y&\vec{e}_z\\\hline\vec{e}_r&\sin\theta\cos\phi&\sin\theta\sin\phi&\cos\theta\\\hline\vec{e}_\theta&\cos\theta\cos\varphi&\cos\theta\sin\phi&-\sin\theta\\\hline\vec{e}_\phi&-\sin\phi&\cos\phi&0\\\hline\end{array}

2. 单位矢量的空间倒数

​ 极坐标系:

根据偏导数定义:

err=limΔr0er( r+Δr,θ) er( r,θ)Δr(a)erθ=limΔr0er(2r,θ+Δθ)er(2r,θ)Δθ(b)eθr=limΔr0eθ(r+Δr,θ)eθ(r,θ)Δr(c)eθθ=limΔr0eθ(1r,θ+Δθ)eθ(1r,θ)Δθ(d)\begin{gathered} \frac{\partial\boldsymbol{e}_r}{\partial r} =\lim_{\Delta r\to0}\frac{e_r(~r+\Delta r,\theta)~-e_r(~r,\theta)}{\Delta r} \text{(a)} \\ \frac{\partial\boldsymbol{e}_r}{\partial\theta} =\lim_{\Delta r\to0}\frac{\boldsymbol{e}_r(2r,\theta+\Delta\theta)-\boldsymbol{e}_r(2r,\theta)}{\Delta\theta} \text{(b)} \\ \frac{\partial\boldsymbol{e}_\theta}{\partial r} =\lim_{\Delta r\to0}\frac{e_\theta(-r+\Delta r,\theta)-e_\theta(-r,\theta)}{\Delta r} \text{(c)} \\ \frac{\partial\boldsymbol{e}_\theta}{\partial\theta} =\lim_{\Delta r\to0}\frac{e_\theta(1r,\theta+\Delta\theta)-e_\theta(1r,\theta)}{\Delta\theta} \text{(d)} \end{gathered}

显然(a)©式当rr改变并没有变化,故为00

对于(b)(d)式:

ΔererΔθ=ΔθΔeθeθΔθ=Δθ\begin{aligned} & \left|\Delta \boldsymbol{e}_r\right| \approx\left|\boldsymbol{e}_r\right| \Delta \theta=\Delta \theta \\ & \left|\Delta \boldsymbol{e}_\theta\right| \approx\left|\boldsymbol{e}_\theta\right| \Delta \theta=\Delta \theta \end{aligned}

可以得到:

err=0,erθ=eθeθr=0,eθθ=er\begin{aligned}\frac{\partial\boldsymbol{e}_r}{\partial r}&=0,\quad\frac{\partial\boldsymbol{e}_r}{\partial\theta}=\boldsymbol{e}_\theta\\\frac{\partial\boldsymbol{e}_\theta}{\partial r}&=0\boldsymbol{,}\quad\frac{\partial\boldsymbol{e}_\theta}{\partial\theta}=-\boldsymbol{e}_r\end{aligned}

​ 柱坐标系:

由于单位矢量eze_z为常矢量,其坐标偏导数均为零,又zz变化时只是平移了矢量,故对zz的偏导数仍为零:

eρρ=0,eρφ=eφ,eρz=0eφρ=0,eφφ=eρ,eφz=0ezρ=0,ezφ=0,ezz=0\begin{aligned}\frac{\partial e_\rho}{\partial\rho}&=0,\quad\frac{\partial e_\rho}{\partial\varphi}=e_\varphi,\quad\frac{\partial e_\rho}{\partial z}=0\\\frac{\partial e_\varphi}{\partial\rho}&=0,\quad\frac{\partial e_\varphi}{\partial\varphi}=-e_\rho,\quad\frac{\partial e_\varphi}{\partial z}=0\\\frac{\partial e_z}{\partial\rho}&=0,\quad\frac{\partial e_z}{\partial\varphi}=0,\quad\frac{\partial e_z}{\partial z}=0\end{aligned}

​ 球坐标系:

r,θr,\theta平面构成平面极坐标系,又eϕe_{\phi}大小和方向不随rrθ\theta变化,可以得出:

err=0,erθ=eθ,eθr=0,eθθ=er\frac{\partial\boldsymbol{e}_r}{\partial r}=0,\quad\frac{\partial\boldsymbol{e}_r}{\partial\theta}=e_\theta,\quad\frac{\partial\boldsymbol{e}_\theta}{\partial r}=0,\quad\frac{\partial\boldsymbol{e}_\theta}{\partial\theta}=-\boldsymbol{e}_r

eφr=0,eφθ=0\frac{\partial\boldsymbol{e}_{\varphi}}{\partial r}=0,\quad\frac{\partial\boldsymbol{e}_{\varphi}}{\partial\theta}=0

ϕ{\phi}变化时,可投影到ρϕ{\rho}{\phi}平面进行求导,最终得到:

{erθ=eθ,erϕ=eϕsinθeθθ=er,eθϕ=eϕcosθeϕθ=0,eϕϕ=e,sinθeϕcosθ\begin{cases}\frac{\partial\boldsymbol{e}_r}{\partial\theta}=\boldsymbol{e}_\theta,\quad\frac{\partial\boldsymbol{e}_r}{\partial\boldsymbol{\phi}}=\boldsymbol{e}_\phi\sin\theta\\\\\frac{\partial\boldsymbol{e}_\theta}{\partial\theta}=-\boldsymbol{e}_r,\quad\frac{\partial\boldsymbol{e}_\theta}{\partial\boldsymbol{\phi}}=\boldsymbol{e}_\phi\cos\theta\\\\\frac{\partial\boldsymbol{e}_\phi}{\partial\theta}=0,\quad\frac{\partial\boldsymbol{e}_\phi}{\partial\phi}=-\boldsymbol{e}_,\sin\theta-\boldsymbol{e}_\phi\cos\theta\end{cases}

以上推导参考罗宏超,鞠丽平.微分几何法求解单位矢量的空间导数[J].大学物理,2016,35(12):23-25+41.DOI:10.16854/j.cnki.1000-0712.2016.0175.

该封面图片由katerinavulcovaPixabay上发布